
Scheduled for Oral Argument on February 26 and 27, 2001

In The
United States Court of Appeals

For The District Of Columbia Circuit

No. 00-5212 (Consolidated with No. 00-5213)

United States of America,
Plaintiff-Appellee,

v.
Microsoft Corporation,

Defendant-Appellant.

On Appeal from the United States District Court
for the District of Columbia

Brief of Professor Lee A. Hollaar
as Amicus Curiae

in Support of Neither Side

-

Professor Lee A. Hollaar, pro se
School of Computing
University of Utah
3190 Merrill Engineering Building
50 S Central Campus Dr
Salt Lake City UT 84112-9205
Phone: 801-581-3203

801-363-8086
December 26, 2000 Fax: 801-581-5843

i

Certificate as to Parties, Rulings, and Related Cases

Parties and Amici

All parties, intervenors, and amici appearing before the District Court and this

Court are listed in the Brief for Microsoft Corporation.

Rulings Under Review

References to the rulings at issue appear in the Brief for Microsoft Corporation.

Related Cases

References to related cases appear in the Brief for Microsoft Corporation

ii

Table of Contents

Table of Authorities .. iii
Cases .. iii
Statutes .. iii

Glossary ... iv

Introduction and Interest of Amicus ... 1

Operating Systems ... 2

Combining Programs ... 7
Tautological Benefits .. 9
The Value of the Benefit ... 12

Why Can’t Others Combine the Programs? .. 15

Determining the Nature of the Combination .. 17

A Proposed Procedure for Applying This Court’s Test ... 20

Such a Procedure is Well Within a Court’s Competency .. 23

iii

Table of Authorities

Cases
Caldera v. Microsoft,
72 F.Supp. 2d 1295 (DC Utah, 1999) ... 18

Computer Associates v. Altai,
982 F.2d 693 (Second Circuit, 1992) .. 2, 24

 * United States v. Microsoft Corp.,
147 F.3d 935 (D.C. Circuit, 1988) .. passim

Lasercomb America Inc. v. Reynolds,
911 F2d 970 (Fourth Circuit, 1990) ... 17

Statutes
17 U.S.C. 101, 106A .. 17

iv

Glossary
“API” An “application programming interface” is a specified way for an

application program to make use of the services provided by an
operating system. These may be calls directly invoking the basic
functionality of the operating system, or calls to shared library
routines distributed with the operating system that perform
more complex operations than the direct calls to the operating
system, such as rendering a page of text.

“DLL” A “dynamic-link library” is Microsoft’s term for a shared library
where many applications can use the same subprogram in the
library and that subprogram does not need to be in memory
unless it is actually being used. A DLL behaves the same as if it
were a subroutine of the application program, making calls to
the operating system when necessary.

“HTML” “Hypertext Markup Language” is the way that documents are
formatted for use on the Internet’s World Wide Web.

“OEM” An “original equipment manufacturer” is the maker of computer
systems for sale to the public. They generally take hardware
components designed and manufactured by them and others,
and install an operating system and application programs to get
a system that the public can use with little additional effort.

“Windows” When used without qualification, I am referring to the Windows
95 operating system from Microsoft or its later versions,
Windows 98 and Windows ME.

1

Introduction and Interest of Amicus

In this brief, I will be discussing the combining of two (or more) computer

programs to form a single program which replaces the prior programs in the

market. (I will be using the neutral term “combining,” rather than “tying,”

”bundling,” “integrating,” or similar terms that have implications that may prejudge

the nature of the combination.) I will not be discussing such combining from an

antitrust law point of view – I’m sure that will be well-covered by the other briefs –

but in light of the applicable computer software technology.

As a professor of computer science teaching hardware and software design for

about twenty-five years and law-and-technology for over fifteen years, and as the

primary technical expert for the plaintiff in Caldera v. Microsoft (United States

District Court, District of Utah, Central Division, Civil No. 2:96CV645B), I have

given substantial thought to the nature of computer software and the technological

effects of combining two programs.

Other than some Microsoft stock held by mutual funds over which I have no

control, I have no financial interest in the outcome of this appeal, and support

neither party in this brief. And while I have been a technical expert in cases against

Microsoft, in the Caldera case Microsoft first tried to hire me and I made my

decision to work for Caldera after presentations of the merits of their positions by

both Caldera and Microsoft.

While I have identified myself as a Professor of Computer Science in the

School of Computing at the University of Utah, I am filing this brief as an

2

individual, and not as a representative of the University of Utah. The views

expressed in this brief are solely my own, and not those of any other person or

organization, and no other person or organization has provided financial support to

me for this filing.

I am submitting this brief because I believe that this Court’s opinion must be

both legally and technically sound. As an example from a related area – copyright

law – the Third Circuit’s opinion in Whelan v. Jaslow, 797 F,2d 1222 (1986), was

based on an unrealistically simple view of computer software: that a program has

one (or a very few) ideas, and everything else is protectable expression. The opinion

was heavily-criticized by both technical and legal commentators. In contrast, the

Second Circuit’s opinion in Computer Associates v. Altai, 982 F.2d 693 (1992), is

based on a better computer science foundation. Although the tests from that opinion

are not as simple as those in Whelan, their complexity accurately mirrors the

complexity of the computer software, and so have been well-received by both courts

and commentators.

Operating Systems

Before discussing the combining of computer programs, it will be useful to

look at the special nature of operating systems such as Windows, that sets them

apart from other computer programs when we consider the combining of programs.

(When I use the term Windows without any further designation, I’m referring to

either Windows 95 or its later versions, Windows 98 and Windows ME.)

3

First, I will discuss how there is no good definition for what is included in an

operating system, and that in a broad sense an operating system might include

shared libraries and application programs in addition to the program that controls

the computer. Then, I discuss how the services requested by application programs

can be supplied either by the basic functionality of the operating system, or through

library routines shipped with the operating system. Such library routines are how

Microsoft has included its Internet Explorer capability in Windows 98.

As Microsoft says on page 13 of their brief, “There is no universally accepted

definition of operating systems.” Clearly, it is not useful to base legal decisions on

terms which have a variety of meanings, such as “operating system,” “integrated,”

or “Windows.” You have to see what is actually there.

For example, “Windows” can refer to anything from a 32-bit operating system

that also includes a version of MS-DOS for operating system loading and to provide

support for legacy programs, to everything included on the distribution disk that

contains that operating system. Because there is no clear definition of what an

operating system is, it is difficult to say whether an application program shipped

with an operating system is part of that operating system or not.

As another example where ill-defined terminology makes it impossible to

determine what is included, when Microsoft refers to its intention to “include built-

in access to the Internet” on page 21 of their brief, it is not clear whether they are

referring to their Internet Explorer browser program (not included in the original

release of Windows 95, see page 24 of Microsoft’s brief) or the other networking

4

capabilities that they included in the first release of Windows 95: support for the

Internet data communications protocols, support for dial-up connections to an

internet service provider, and utility programs for remote access of other computers

such as FTP (file transfer program) and Telnet.

Contemporary operating systems are not a single program, and provide

services to application programs in a variety of ways. Sometimes the application

program uses the basic functionality of the operating system, as when it opens a file

and reads data from it. But other times it simply calls a library routine that was

included with the operating system, to perform a more complex operation such as

formatting a windows to display all the files in a particular directory so that a file

can be selected for opening.

These library routines behave the same as if they were subroutine

components of the application program, making calls to the operating system when

necessary. However, these libraries are managed in such a way that they can be

shared between a number of programs, reducing system memory requirements, and

are linked to the application program whenever they are needed, rather than

always being a part of the application program. Because these library routines are

linked dynamically (rather than statically), Microsoft refers to them as dynamic-

link libraries, or DLLs. Other operating system suppliers call them shared libraries.

It is precisely such DLLs that Microsoft refers to when it talks about the

“componentized design” of Internet Explorer starting with version 3 (see page 31 of

Microsoft’s brief), and the ability for other application program developers to call

5

those DLLs the same way Microsoft does in Internet Explorer. (Microsoft indicates

that the DLLs they have provided are MSHTML.DLL, SHDOCVW.DLL,

URLMON.DLL, and WININET.DLL. See the descriptions of these shared libraries

in the Glossary and on page 31 of Microsoft’s brief.)

Microsoft is not the only supplier of DLLs for Windows. Many application

programs, including Netscape and WordPerfect, have their own DLLs to supply

functionality when needed while not requiring memory when the functionality is

not being used. These can be readily seen by looking in the directory where, for

example, Netscape has been installed. Other vendors supply DLLs to application

program developers for performing particular functions, so that those developers do

not have to reinvent the wheel to use those functions. Microsoft is not in a unique

position to supply an HTML rendering engine as a DLL, except to the extent that it

can put it on the same distribution disk as Windows.

In addition to the DLLs for Internet Explorer and a host of other functions,

Microsoft’s distribution of Windows contains a variety of other things that are not a

necessary part of the operating system. About 30 different application programs or

features can be selected for inclusion or exclusion at the time Windows is installed.

These include the infamous solitaire game that acts as a time sink for many people,

a simple word processor, dial-up networking, and an email client. Since these

programs can be excluded at the time Windows is installed, and can be removed at

any later time, without affecting the operation of Windows (other than the program

no long being available), they are clearly an adjunct to the Windows operating

6

system although they are included as part of the Windows distribution. Many are

simply application programs distributed with Windows.

Until Windows 98, at least those portions of Internet Explorer seen by the

user as a browser application program were removable from Windows in the same

fashion as the solitaire game and similar application programs. Removal of any

application program, whether from Microsoft or other vendors, does not remove all

the DLLs used by that application program when there is another application

program that is using a DLL.

The relationship between an operating system and a program that uses the

service of that operating system is fundamentally different from the relationship

between two application programs. An application program written for a particular

operating system always needs that operating system in order to run. (It could also

run on a compatible operating system that has the same application program

interfaces (APIs), but such a system is virtually impossible to create today because

of the thousands of APIs provided by an operating system like Windows, with more

added every year.) That is generally not the case for two application programs: in

the normal course of using the Microsoft Excel spreadsheet program, you don’t need

Microsoft Word installed on your machine, but you will not be able to run Microsoft

Excel or Word without Windows.

When shared libraries, or DLLs, as discussed above, are considered, it is very

difficult to draw a line between an operating system and an application program. A

DLL can be supplied as part of an application program (like the DLLs that come

7

with Netscape) or as part of Windows (like the four DLLs that Microsoft has

indicated make up the Internet Explorer component for Windows), yet they are used

by an application program in exactly the same way. It is always possible to take

DLLs used by an application program and include them as part of the Windows

distribution, much as Microsoft did with the DLLs that were a part of the Internet

Explorer 4 distribution when it produced Windows 98.

Combining Programs

As previously mentioned, in this brief I am discussing the combining of two

(or more) computer programs to form a single program which replaces the prior

programs in the market. When one of those programs enjoys a dominant position in

the market, there must be a good reason for combining that program with another,

because the separate markets for the two original programs will be reduced or

eliminated, and that may reduce competition. It is at times of competition that we

have seen the most innovation in software – both the times when it seemed like

every major university was developing new operating systems and programming

languages to demonstrate interesting concepts, and when commercial developers

have competed in the marketplace based on the features of their products. (The best

examples of this are the competition between Microsoft and Digital Research in the

DOS arena, and Microsoft and Netscape in browser innovations.)

Although this Court was proposing a test for determining whether something

was “integrated” as that term was used in the Consent Decree, this Court provided

8

an excellent starting point for determining whether the combining of two computer

programs is tying under the antitrust laws.

[T]he combination offered by the manufacturer must be different from
what the purchaser could create from the separate products on his
own. The second point is that it must also be better in some respect;
there should be some technological value to integration.

United States v. Microsoft Corp., 147 F.3d 935, 949 (D.C. Circuit 1998). In other

words, there must be some synergistic effect from the combining of the programs

that can only be achieved by the producer of the two programs combining them.

Without such a synergistic effect, the two programs have simply been

metaphorically bolted together with no resulting technological benefit for

consumers.

Moreover, any improvement must come from the synergistic combination of

the two programs, not from improvements to one or both programs that do not stem

from their combination. Programs are always being improved, and it is likely that a

combination of two programs will use the latest versions of those programs, perhaps

versions that have not been available previously. For example, Windows 98 includes

a number of improvements over Windows 95 that do not stem from the inclusion of

Internet Explorer, such as a new device driver model compatible with Windows

NT5, better computer power management, and support for multiple displays and

new types of hardware.

There may be benefits from the combining of two programs that are not

technological, and such benefits are outside this Court’s test. For instance, it may be

possible to charge less for the combined program than the sum of the previous

9

prices for the two programs because it is being distributed in a single box on a

single compact disc, but that does not add technological value to the combination.

Perhaps one of the major non-technological benefits that comes from any

combining of two programs is that when there is a problem that cannot be readily

determined as coming from one of the programs or the other, because they come

from a single company you only have to go to the technical support people for that

company. There won’t be “finger-pointing” between two companies, with the user in

the middle. You don’t even have to determine which program is causing the

problem, since there is only the combined program. There are likely to be more

interactions between an operating system and an application program that could

cause problems than between two application programs.

The benefit of having a single technical support organization for the

combined program is not a technological benefit – it does not result from any

synergy between the two programs. And it is something that does not need to be

provided only by the software developer, but can be done by an OEM. Often, an

OEM will take on the role of a technical support middleman, especially when that

OEM has put together a system with software from a number of suppliers to gain a

competitive advantage over other OEMs that do not offer that software

configuration.

Tautological Benefits

There are some benefits that will always be true when two computer

programs are combined. The single technical support organization just discussed is

10

such a tautological benefit. These should not be considered when applying this

Court’s test to determine if the combination is a tie under antitrust law unless the

synergistic benefit that results from the combination is beyond what would be

expected from combining two arbitrary programs. Otherwise, because these benefits

are always present when two programs are combined, every combination of

programs would meet this Court’s test.

Examples of such tautological benefits from combining two computer

programs include that the combination can be installed using a single installation

program, rather than two separate programs; that the user does not have to

assemble the two programs to get the combined program; and not having to support

older versions of an operating system in the program that was combined with the

operating system because it will always be run with the newer operating system.

(All three of these benefits were claimed by Microsoft in the Caldera case as benefits

that resulted from the combination of improved versions of Windows 3.X and MS-

DOS to get Windows 95. Microsoft’s attorney, in a hearing before the District Court,

stated that having a single installation program was the “most meaningful benefit”

of combining Windows and MS-DOS.)

Another tautological benefit particular to combining an application program

with an operating system is that a particular shared library that was combined

with the operating system is now available to any application program developer

using the operating system. This is achieved simply by shipping the shared library

along with the operating system. For example, since Microsoft ships its Internet

11

Explorer DLLs (discussed above) as part of Windows 98, application program

developers can use those DLLs’ functionality without having to ship the DLLs with

their own application programs.

But similarly, if Microsoft were to ship Access, a Microsoft database

application program, with Windows, then other application program developers

could write their programs to use the Access database system for keeping track of

information, knowing that it would always be there because it was included with

Windows. The technological benefit does not result from anything special about

Access or Internet Explorer, but simply because it was included with the operating

system distribution and therefore is available to application program developers.

Another tautological benefit, to the extent that a function is performed by

each of the two programs, is that only one copy of the code necessary to perform that

function is included in the combination. Microsoft makes this point on page 43 of its

brief, where it says “eliminating redundant software code and reducing the amount

of such code that must be loaded into memory can be beneficial to users.” Of course,

libraries that are shared by applications such as the operating system help program

or a browser minimize such redundant code. But the benefit will exist whenever the

two programs being combined have at least one function whose implementation

code can be shared.

If a tautological benefit were enough for a combination of two existing

programs to replace those two programs in the market, then there would never be a

tying prohibition in computer software. If Microsoft decided to ship Microsoft Office

12

(its office suite of programs that includes the Word word processor and Excel

spreadsheet programs) along with Windows, it could claim that there was a benefit

to the user because of having a single program to install everything, and therefore it

could never be a tie in violation of the antitrust laws. It is not reasonable to grant

such a blanket exemption to the antitrust laws for computer software.

The Value of the Benefit

In the context of the Consent Decree, this Court indicated that the test for

“integration” should not consider whether the combination of the computer

programs results in an overall benefit to the users of the combined program.

The question is not whether the integration is a net plus but merely
whether there is a plausible claim that it brings some advantage.
Whether or not this is the appropriate test for antitrust law
generally, we believe it is the only sensible reading of § IV(E)(i).

United States v. Microsoft Corp., 147 F.3d at 950. But this Court should not give a

pass under antitrust law to a program that does not produce an overall benefit for

consumers. Merely stating a plausible benefit, that may be outweighed by the

negative consequences of the combination, should not be enough.

It is important to remember that the combining of two existing, separately-

marketed programs so that only the single, combined program is now available to

consumers inherently has a detrimental effect when one of the programs has a

dominant position in the market. It has the potential to reduce or eliminate

competitive markets in the separate programs, and it is competition that has

brought innovation to the computer software arena.

13

When Microsoft decided to combine improved versions of Windows 3 and MS-

DOS to produce Windows 95, the market for a compatible DOS was effectively

eliminated. Unless there is a special need, most people would rather just install a

single, combined program than two programs from separate sources. (This is

because of the tautological benefits of a single installation program and of having a

single point of contact if there is a problem.) Novell, which was marketing a

compatible DOS (DR DOS, originally developed by Digital Research) was left with a

greatly-reduced market because it was unlikely that most users of Windows 95

would pay extra and go through the additional effort to replace the DOS portion of

Windows 95 with DR DOS. While it is, of course, speculation what would have

happened had the separate markets remained for the Windows 32-bit operating

system and the DOS 16-bit operating system used in conjunction with Windows

(and without Windows, at the time of Windows 95, by many people running

programs like WordPerfect or computer games), it is likely that to compete against

MS-DOS, Novell would have come up with innovative solutions that would have

extended the viability of DOS for many users and may have even made it a better

foundation for Windows so that system crashes were less frequent.

One of the greatest drivers of innovation and customer benefit is competition.

The combining of two computer programs to form a single program which replaces

the prior programs in the market must at least have synergistic benefits stemming

from that combination that outweigh the elimination or substantial reduction of the

competitive markets for the separate computer programs.

14

There are other times where combining programs may have detrimental

effects that outweigh the benefits of the combination. There have been a number of

viruses that have affected users that are running both Windows and Microsoft’s

Outlook electronic mail program. The “Melissa” virus is one that received a great

deal of publicity, but it is just one of many in the past year. Melissa did not affect

users who did not have Outlook as their mail program. I use a non-Microsoft email

program. To examine how Melissa works, I had a friend email to me a copy that he

received and no problems occurred on my computer.

But had Outlook been combined with Windows so that every system had

Outlook running, many more people would have been hurt by Melissa or other

viruses. Just as a real virus spreads more rapidly through a homogeneous

population, so does a computer virus cause more damage when most computer

systems have identical software.

While it may be difficult to determine whether the synergistic benefits from

combining two computer programs are outweighed by the detrimental effects to

aspects like security, in many cases a benefit claimed may be so minor as to make

the determination of whether the benefit justifies the combination quite simple. For

example, in the Caldera case Microsoft claimed that one of the benefits of combining

improved versions of Windows and DOS was the pretty cloud pattern that is

displayed when Windows 95 is starting. This hid the various screen displays as

things were being loaded. But Microsoft’s own documentation indicates that this

“boot noise obscurer” can cause the computer to hang with some memory managers

15

from other vendors. Even ignoring the detriment that always exists when previous

competitive markets are reduced or eliminated because existing products have been

combined, it is difficult to see any net benefit to consumers from having a pretty

picture that may cause their computer to hang.

Why Can’t Others Combine the Programs?

Under this Court’s test, a combination of two computer programs “must be

different from what the purchaser could create from the separate products on his

own.” United States v. Microsoft Corp., 147 F.3d at 949. But why the purchaser

cannot create the same combination must also be considered.

Sometimes, the combination requires changes to one or both of the existing

programs being combined that can only be done by the developer of those programs.

But many programs, and especially operating systems, are constructed from

modules that can be replaced with alternatives providing the same functionality as

well as extended capabilities. Most operating systems, and Windows in particular,

allow the addition of device drivers, shared libraries (DLLs), and other modules by

suppliers other than Microsoft to support new hardware devices or extend the

capabilities of the operating system. Windows even allows the replacement of the

user interface with an alternative by changing a line in a configuration file.

Many of the features now present in Windows were first developed as add-ons

by other companies, and were later adopted by Microsoft. The initial

implementations took advantage of the modular design of the operating system,

adding or replacing modules to achieve the desired functionality.

16

A more likely reason why the purchaser can’t do the combination, especially

when the purchaser of the two computer programs is an original equipment

manufacturer (OEM) who is combining hardware and software for sale to the

public, is that the license for a program does not allow the OEM to make any

changes to the distribution they receive. For example, an OEM might not be

permitted to replace the screen manager (the program that manages computer

display, as well as providing a command menu that the user clicks to start a new

program), something that may be necessary to provide the capability of clicking on a

Web link displayed as an icon on the screen to go to the location associated with

that icon. Because of the restriction against modifying the distribution from the

operating system vendor, it would not be possible for the OEM to substitute an

alternative screen manager from another vendor that provides the same capability,

and perhaps some innovative capabilities not available with the operating system

vendor’s screen manager, to better compete by offering an enhanced product.

In that example, the reason why the OEM can’t combine two programs to get

the same capabilities is not technical. It is because the operating system vendor will

not permit it. And that can’t be a satisfactory reason when the operating system

vendor is using its market power to get those restrictive license terms.

This is not to say that an OEM which substitutes alternatives from other

vendors for modules supplied by Microsoft should be allowed to “pass off” the

resulting combination as “Windows,” because that would likely be a violation of

trademark law. But it is more likely that an OEM who has gone through the effort

17

of combining modules from other vendors to achieve some enhanced capability

would advertise that capability, rather than try to pass off the combination as an

unmodified Windows.

Substituting an alternative module for one supplied by Microsoft may not

violate copyright law, and certainly not because of any “integrity of the work”

argument. The United States recognizes “moral rights” of attribution and integrity

only for works of visual art in limited editions of 200 or fewer copies. (See 17 U.S.C.

106A and the definition of “work of visual art” in 17 U.S.C. 101.) A bookstore can

replace the last chapter of a mystery novel without infringing its copyright, as long

as they are not reprinting the other chapters but are simply removing the last

chapter and replacing it with an alternative one, but must not pass the book off as

the original. Having a copyright in a work does not give that copyright owner

unlimited freedom in the terms he can impose. See, for example, Lasercomb

America Inc. v. Reynolds, 911 F2d 970 (Fourth Circuit, 1990).

Determining the Nature of the Combination

Before discussing a possible procedure for applying this Court’s test to see if

the combining of two computer programs to form a single program which replaces

the prior programs in the market falls within this Court’s test, I’d like to discuss

some procedures that are not effective.

Such a determination clearly cannot be done at a superficial level. The

Windows 95 user interface looks considerably different from that of Windows 3.1.

But that may be the result of changes only in the Windows portion of a

18

Windows/DOS combination, and might not require significant changes to the DOS

portion of the combination. This Court’s test requires that the combination produce

some synergistic result, not that the combination have additional or different

capabilities because the programs being combined are improved versions of the

existing programs.

In the procedure this Court used in the context of the Consent Degree to

determine whether the Windows 95/Internet Explorer combination was

“integrated,” this Court tried to place that combination on a spectrum ranging from

a “non-integrated” Windows 3.X/MS-DOS to an “integrated” Windows 95. That will

only work if it is clear that the ends of the spectrum indeed represent “integrated”

and “not integrated.” But that may not be the case for the end-points used by this

Court in its previous decision. There is little in the record leading up to this Court’s

decision regarding whether Windows 95 is really an integrated product, or whether

it is simply upgraded versions of Windows 3.X and MS-DOS operating together as

before.

The Consent Decree’s acceptance of Windows 95 as permissible predates the

first release of Windows 95. There is no evidence that the Department of Justice did

a technical analysis of Windows 95 and how it differed from a combination of

Windows 3.1 and MS-DOS. But the United States District Court for Utah found

that there was a genuine issue whether Windows 95 was really an integrated

product, and denied Microsoft’s motion for summary judgement on that issue.

Caldera v. Microsoft, 72 F.Supp. 2d 1295, 1397 (DC Utah 1999). If, in fact, Windows

19

95 is no more integrated than Windows 3.1 and MS-DOS were, other than being

marketed only as a combination, then the endpoints of the comparison spectrum are

really the same, and it is impossible to learn anything by trying to place the

combination under review on such a zero-length spectrum.

But even if the extent of integration between Windows 95 and Windows

3.1/MS-DOS is different, the determination of the integration of any other

combination by placing it on such a spectrum requires three times the effort, since

one has to determine the nature of the integration for each endpoint and compare

the nature of the integration for the combination under review to those endpoints.

The test sometimes used by Microsoft, that Windows will not boot or in some

other manner will not fully work when the Internet Explorer components are

removed, is likewise unlikely to properly determine the true nature of the

combination. (See United States v. Microsoft Corp., 147 F.3d at 948.)

There are many reasons why Windows will not boot, but the most likely is

that when the Internet Explorer capabilities were added to Windows, one or more

modules of Windows were replaced with upgraded versions. If the Internet Explorer

components that were removed included one or more of these upgraded Windows

modules, and the original Windows module are not replaced, it is not surprising

that problems would result. This is analogous to replacing a light switch in your

home with a dimmer (a module with added capabilities). One would not be

surprised if your lights no longer worked if you removed the dimmer but did not put

back the original light switch.

20

Similarly, not being able to perform a function based on a capability

introduced in the upgrade of one of the programs being combined does not provide a

good test. Since Microsoft has changed the format of its help files so that they

require an HTML rendering engine for their display, it is not surprising that they

will not be displayable if the HTML rendering engine is removed. If Microsoft

wanted to justify the combination of their word processor, Microsoft Word, with

Windows, they could have changed the format of the help files to that used by Word.

If they had wanted to justify combining their database system, Access, with

Windows, they could have stored the system registry, which contains configuration

information, as an Access database. If one is clever enough, one can justify the

combining of most application programs with Windows, and then show how a

capability of the combination is lost when that application program is removed.

It is interesting to note that of the four shared libraries that Microsoft

describes as the components of Internet Explorer now included in Windows 98 (see

page 31 and the Glossary of Microsoft’s brief), only one (MSHTML.DLL) is

mentioned as used to provide “Internet Support for ISVs” (see page 42-43 of

Microsoft’s brief) or the “Windows 98 Help System” (see page 44 of Microsoft’s brief).

A Proposed Procedure for Applying This Court’s Test

Based on the discussion above, it is possible to come up with a test for

determining when the combination of two computer programs produces the

synergistic technological benefits this Court considered as key to whether the

21

combination is permissible. The prior existence of the two programs greatly

simplifies this proposed procedure

Again, it is important to recognize that this procedure is only necessary when

two existing programs are being combined, one of the programs has a dominant

market position, and those two programs will not also be separately marketed.

When the original programs remain in the market, especially with the

improvements that were made to the programs in the combination, there should be

no objection to the combination unless there is an antitrust violation for another

reason. Consumers and the market will have the power to decide whether the single

combined program or combinations made by consumers or other vendors using one

or both of the programs is best, and when there is no longer a market for the

separate programs.

As the first step of the proposed procedure, the defendant should state the

benefits that accrue from the combination of the existing programs, because the

defendant is in the best position to identify those benefits. The benefits do not

necessarily have to be the original reasons for combining the existing programs, but

can be serendipitous benefits found after the combination has been made.

Having to state the particular benefits from the combination greatly

simplifies the work that must then be performed to determine how those benefits

are produced. Instead of the plaintiff’s expert having to look through millions of

lines of source code to opine what benefits there may or may not be in the

22

combination, that expert can do an in-depth study of how each of the claimed

benefits are produced.

Second, the claimed benefits should be examined to determine whether they

are benefits that don’t directly benefit consumers, non-technical benefits, or

tautological benefits, all of which should normally be excluded. For example, if the

combination makes it easier for the developers to maintain the program, that

should normally be excluded from the analysis because it does not directly benefit

consumers. However, if a benefit that would normally be excluded is far greater

than would normally be expected when similar programs are combined, then it

should be considered.

Finally, the source code for the combination should be examined to determine

whether the benefit stems from the combination, or from improvements to one of

the existing programs that are being combined. This analysis is greatly simplified

by the presence of the existing programs. Commonly-available software

development tools, like source file comparison programs, and a review of any change

history log or comments for the programs, can be used to determine what produces

the claimed benefit.

At this stage, it will also be simple to see if code from the two existing

programs have been comingled so that it is impossible to separate one program from

another. Because code can always be moved from one module, there must be some

technical justification for such code movement.

23

Also at this stage, any reasons why somebody other than the developer of the

combination could not join the separate products to create the same combination

can be determined. There must be a technological reason for such inability, and not

simply that the developer of the combination does not permit it.

A procedure such as this will determine if this Court’s test for permissible

combinations has been met:

[T]he combination offered by the manufacturer must be different from
what the purchaser could create from the separate products on his
own. The second point is that it must also be better in some respect;
there should be some technological value to integration.

United States v. Microsoft Corp., 147 F.3d at 949.

Such a Procedure is Well Within a Court’s Competency

This Court has correctly warned against embarking on product design

assessments. Because of the limits on their institutional competency, “A court's

evaluation of a claim of integration must be narrow and deferential.” United States

v. Microsoft Corp., 147 F.3d at 949. But that does not mean that a court should give

any combination of two computer programs to form a single program which replaces

the prior programs in the market a free pass.

It is important to keep in mind that as long as the existing products remain

available until there is evidence that there is no market demand for them, any

combination of computer programs is permissible as long as it does not violate other

principles of antitrust law. A court is not being asked to second-guess product

designs in general, but only whether it is an antitrust violation to replace two

24

computer programs that have previously been marketed separately, one of which

has a dominant market position, with a single combination while no longer offering

the two computer programs separately. As long as the two programs that make up

the combination continue to be offered separately, there is no need to examine their

combination.

In other areas of the law, courts are called on to make decisions about

computer software designs. In copyright law, under the test first stated in Computer

Associates v. Altai, 982 F.2d 693 (Second Circuit, 1992), courts must decide whether

a portion of a computer program is substantially similar to a copyrighted program

due to efficiency considerations or dictated by external factors. In patent law, courts

must decide whether the claims of a patent read on a computer program, or whether

the program performs substantially the same function, in substantially the same

way, getting substantially the same result as the claimed invention.

The procedure I proposed above is similar in complexity to the copyright and

patent analyses – perhaps easier because the benefits to be considered have to be

particularly pointed out in defense of the combination. In fact, it resembles the

abstraction-filtration-comparison test that is the heart of most copyright

infringement analysis.

In those cases, the court is not asked to make such determinations without

help. Both sides will put forward technical experts for examination by the court to

aid it in its determination. Because of our adversarial system, each side will try to

25

make the issues clear to the factfinder while knowing that they will be corrected by

the other side if they misrepresent anything.

In addition, to assist the trial or appellate courts, neutral experts can be used

by the courts to help the judges better understand the technology and aid them in

making their decisions. The trial judge in Computer Associates v. Altai had the

benefit of an MIT professor of computer science, supplied under an agreement with

both parties. The American Associate for the Advancement of Science has recently

established a project to aid in identifying technical experts that could assist the

courts – see http://www.aaas.org/spp/case/case.htm. (I am a member of the project’s

recruitment and screening panel.) Such experts would, of course, not be making

decisions, but only assisting judges better understand the issues and helping any

decision be not only good law, but also technologically-sound.

Respectfully submitted,

Professor Lee A. Hollaar

http://www.aaas.org/spp/case/case.htm

1

CERTIFICATE of SERVICE

I hereby certify that on this 26th day of December, 2000, I served a copy via first
class mail of the foregoing Brief of Professor Lee A. Hollaar as Amicus Curiae
in Support of Neither Side to the following:

Phillip R. Malone
Antitrust Division
U.S. Department of Justice
325 Seventh Street, N.W.
Suite 615
Washington, D.C. 20530

Catherine G. O’Sullivan
Chief, Appellate Section
U.S. Department of Justice
Antitrust Division
601 D Street, N.W.
Room 10536
Washington, D.C. 20530

Richard L. Schwartz
Deputy Chief, Antitrust Bureau
New York State Attorney General’s
Office
120 Broadway, Suite 2601
New York, New York 10271

Kevin J. O’Connor
Office of the Attorney General of
Wisconsin
P.O. Box 7857
123 West Washington Avenue
Madison, Wisconsin 53703-7957

Christine Rosso
Chief, Antitrust Bureau
Illinois Attorney General’s Office
100 West Randolph Street, 13th Floor
Chicago, Illinois 60601

Robert S. Getman
359 West 29th Street
Suite G
New York, New York 10001

Bradley P. Smith
Sullivan & Cromwell
1701 Pennsylvania Ave. N.W., 8th
floor
Washington, DC 20006

John Warden
Sullivan & Cromwell
125 Broad Street
New York, NY 10004

William Neukom
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052

Edward J. Black
Computer & Communications
Industry Ass'n
666 Eleventh Street N.W., Suite 600
Washington, DC 20001

Robert H. Bork
1150 17th Street N.W.
Washington, DC 20036

Louis R. Cohen
Wilmer, Cutler & Pickering
2445 M Street N.W.
Washington, DC 20037-1420

2

Donald M. Falk
Mayer, Brown and Platt
1909 K Street, N.W.
Washington, DC 20006

Laura Bennett Peterson
700 New Hampshire Avenue, N.W.
Washington, DC 20037

Paul T. Cappuccio
America Online, Inc.
22000 AOL Way
Dulles, VA 20166

Carl Lundgren
5035 South 25th Street
Arlington, VA 22206-1057

Lee A. Hollaar

	Certificate as to Parties, Rulings, and Related Cases
	Parties and Amici
	Rulings Under Review
	Related Cases

	Table of Contents
	Table of Authorities
	Cases
	Statutes

	Glossary
	Introduction and Interest of Amicus
	Operating Systems
	Combining Programs
	Tautological Benefits
	The Value of the Benefit

	Why Can’t Others Combine the Programs?
	Determining the Nature of the Combination
	A Proposed Procedure for Applying This Court’s Test
	Such a Procedure is Well Within a Court’s Competency

		2000-12-23T12:12:47-0700
	Lee A. Hollaar
	Make sure document is not altered

